Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mikrochim Acta ; 191(5): 255, 2024 04 10.
Article in English | MEDLINE | ID: mdl-38594377

ABSTRACT

Perovskite quantum dots (PQDs) are novel nanomaterials wherein perovskites are used to formulate quantum dots (QDs). The present study utilizes the excellent fluorescence quantum yields of these nanomaterials to detect 16S rRNA of circulating microbiome for risk assessment of cardiovascular diseases (CVDs). A long short-term memory (LSTM) deep learning model was used to find the association of the circulating bacterial species with CVD risk, which showed the abundance of three different bacterial species (Bauldia litoralis (BL), Hymenobacter properus (HYM), and Virgisporangium myanmarense (VIG)). The observations suggested that the developed nano-sensor provides high sensitivity, selectivity, and applicability. The observed sensitivities for Bauldia litoralis, Hymenobacter properus, and Virgisporangium myanmarense were 0.606, 0.300, and 0.281 fg, respectively. The developed sensor eliminates the need for labelling, amplification, quantification, and biochemical assessments, which are more labour-intensive, time-consuming, and less reliable. Due to the rapid detection time, user-friendly nature, and stability, the proposed method has a significant advantage in facilitating point-of-care testing of CVDs in the future. This may also facilitate easy integration of the approach into various healthcare settings, making it accessible and valuable for resource-constrained environments.


Subject(s)
Alphaproteobacteria , Calcium Compounds , Cardiovascular Diseases , Deep Learning , Micromonosporaceae , Oxides , Quantum Dots , Titanium , Humans , RNA, Ribosomal, 16S/genetics , Cardiovascular Diseases/diagnosis
2.
Environ Sci Pollut Res Int ; 31(6): 8429-8452, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38182954

ABSTRACT

Micro(nano)plastics (MNPs) are pervasive environmental pollutants that individuals eventually consume. Despite this, little is known about MNP's impact on public health. In this article, we assess the evidence for potentially harmful consequences of MNPs in the human body, concentrating on molecular toxicity and exposure routes. Since MNPs are present in various consumer products, foodstuffs, and the air we breathe, exposure can occur through ingestion, inhalation, and skin contact. MNPs exposure can cause mitochondrial oxidative stress, inflammatory lesions, and epigenetic modifications, releasing specific non-coding RNAs in circulation, which can be detected to diagnose non-communicable diseases. This article examines the most fascinating smart carbon-based nanobiosensors for detecting circulating non-coding RNAs (lncRNAs and microRNAs). Carbon-based smart nanomaterials offer many advantages over traditional methods, such as ease of use, sensitivity, specificity, and efficiency, for capturing non-coding RNAs. In particular, the synthetic methods, conjugation chemistries, doping, and in silico approach for the characterization of synthesized carbon nanodots and their adaptability to identify and measure non-coding RNAs associated with MNPs exposure is discussed. Furthermore, the article provides insights into the use of artificial intelligence tools for designing smart carbon nanomaterials.


Subject(s)
Environmental Pollutants , MicroRNAs , Humans , Plastics , Carbon , Artificial Intelligence
3.
ACS Omega ; 8(43): 40677-40684, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37953834

ABSTRACT

The increased understanding of the competitive endogenous RNA (ceRNA) network in the onset and development of breast cancers has suggested their use as promising disease biomarkers. Keeping these RNAs as molecular targets, we designed and developed an optical nanobiosensor for specific detection of the miRNAs-LncRNAs-mRNAs triad grid in circulation. The sensor was formulated using three quantum dots (QDs), i.e., QD-705, QD-525, and GQDs. These QDs were surface-activated and modified with a target-specific probe. The results suggested the significant ability of the developed nanobiosensor to identify target RNAs in both isolated and plasma samples. Apart from the higher specificity and applicability, the assessment of the detection limit showed that the sensor could detect the target up to 1 fg concentration. After appropriate validation, the developed nanobiosensor might prove beneficial to characterizing and detecting aberrant disease-specific cell-free circulating miRNAs-lncRNAs-mRNAs.

4.
Biosensors (Basel) ; 13(2)2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36831992

ABSTRACT

Currently, non-communicable diseases (NCDs) have emerged as potential risks for humans due to adopting a sedentary lifestyle and inaccurate diagnoses. The early detection of NCDs using point-of-care technologies significantly decreases the burden and will be poised to transform clinical intervention and healthcare provision. An imbalance in the levels of circulating cell-free microRNAs (ccf-miRNA) has manifested in NCDs, which are passively released into the bloodstream or actively produced from cells, improving the efficacy of disease screening and providing enormous sensing potential. The effective sensing of ccf-miRNA continues to be a significant technical challenge, even though sophisticated equipment is needed to analyze readouts and expression patterns. Nanomaterials have come to light as a potential solution as they provide significant advantages over other widely used diagnostic techniques to measure miRNAs. Particularly, CNDs-based fluorescence nano-biosensors are of great interest. Owing to the excellent fluorescence characteristics of CNDs, developing such sensors for ccf-microRNAs has been much more accessible. Here, we have critically examined recent advancements in fluorescence-based CNDs biosensors, including tools and techniques used for manufacturing these biosensors. Green synthesis methods for scaling up high-quality, fluorescent CNDs from a natural source are discussed. The various surface modifications that help attach biomolecules to CNDs utilizing covalent conjugation techniques for multiple applications, including self-assembly, sensing, and imaging, are analyzed. The current review will be of particular interest to researchers interested in fluorescence-based biosensors, materials chemistry, nanomedicine, and related fields, as we focus on CNDs-based nano-biosensors for ccf-miRNAs detection applications in the medical field.


Subject(s)
Biosensing Techniques , Circulating MicroRNA , MicroRNAs , Nanostructures , Humans , Carbon/chemistry , Nanostructures/chemistry , Fluorescence , Biosensing Techniques/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...